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1 OBJECTIVES 
 

• The overall goals of this program are to conduct fundamental studies to ascertain 
the multiple mechanical, thermal, chemical, and physical degradation 
mechanisms on hypersonic vehicle performance capabilities for AFR-PEPA-4 
polyimide carbon fiber composites for lightweight structural applications for such 
vehicles. 

• The individual fundamental service environment-induced degradation 
mechanisms include: 

− further polyimide crosslinking; 

− oxidative composite surface degradation; 

− composite strength and modulus decreases with increasing thermal 
exposure; 

− moisture-induced composite blistering; 

− ablation/spalling induced composite shock wave damages. 

• The further curing of AFR-PEPA-4 polyimides has an effect on the resins 
mechanical properties as a result of aerodynamic heating during hypersonic flight 
that will be characterized and then incorporated into the overall damage 
accumulation model. 

• The damage growth kinetics based on the interconnection between fundamental 
oxidative chemical degradation, composite microcrack growth characteristics and 
hypersonic vehicle service environment conditions will be developed in a series 
of generic phase diagrams that can be fed into the damage growth composite 
strength and modulus modeling task. 

• The hypersonic vehicle thermal and stress imposed service environments on 
carbon fiber, transverse composite and matrix failure temperatures in the absence 
of oxidative degradation will be characterized and time-temperature-mechanical 
property diagrams will be developed. 

• Characterization of hygrothermal-induced composite damage will be determined 
by blister formation. 

• It will be ascertained if rapid heating and the associated weight loss of composites 
in hypersonic vehicle service environments can result in shock wave-induced 
composite damage. 

• A time dependent damage model will be developed to address through thickness 
damage zones of structural and mechanical properties ranging from an exterior 
chemical degradation, oxidative, brittle char zone through to inner zones with 
little chemical degradation but lower strengths and modulus as a result from 
increased temperature exposure. 
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• The ultimate objective is to develop a generic lifetime performance model for 
AFR-PEPA-4 carbon fiber composites exposed to hypersonic vehicle service 
environments based on synergistic, fundamental, diverse thermal, chemical, 
physical, and mechanical potential damage mechanisms. 

 
 

2 STATUS OF EFFORT 
 

In the third and final year of the program the following technical areas were pursued 
and their progress is reported: 
(i) Further AFR-PEPA-4 polyimide cross-linking; 
(ii) Oxidative surface degradation of AFR-PEPA-4 carbon fiber composites; 
(iii)Composite strength and modulus decreases with increasing thermal exposure, that 

includes resin, fiber and fiber-matrix interface deterioration in mechanical 
properties; 

(iv) Moisture-induced composite blistering; 
(v) Ablation/spalling induced composite damage as a result of shock waves; 
(vi) Development of a model within a general thermodynamic framework to describe 

various types of damage in High Temperature Polymer Composites. 
 
 

3 ACCOMPLISHMENTS/NEW FINDINGS 
 

3.1  FURTHER AFR-PEPA-4 POLYIMIDE CROSS-LINKING 
 

AFR-PEPA-N polyimide only obtains 80% cure through the phenylethynyl 
crosslinking carbon triple bonds under the standard cure cycle of 375 °C for 4 hours 
[1].  During the initial stages of hypersonic flight, aerodynamic heating will induce 
additional cure of the exterior layers of the composite.  However, this further rapid 
curing will result in an increase of the polyimide crosslinking and Tg that will affect 
the resin’s mechanical properties.   

FTIR and DSC studies, as a function of isothermal cure, for AFR-PEPA-4 
polyimides reveal that full cure is still not obtained for a cure cycle of 410 °C for 8 
hours [1].  In Figure 1, a plot of Tg versus reaction conversion is shown.  It was 
determined that full cure can be achieved at 437.2 °C by extrapolation of this plot.  
For cure lines at 440 – 450 °C of over an hour, the major degradation regime will be 
shifted into the cure region. The mechanical properties of the AFR-PEPA-N 
polyimides can be effected by the combination of crosslink density, Tg and 
degradation mechanisms, which have not yet been determined as a function of 
temperature and cure conditions.  Characterization of the 
time-temperature-mechanical property (T.T.M.P.) relationships in the 400 - 500 °C 
temperature range for AFR-PEPA-N polyimide is currently underway.   
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Figure 1: Tg as a function of reaction conversion for AFR-PEPA-4 polyimide 

 
The AFR-PEPA-N polyimide resin panels have been successfully made, cut for 

samples, and tested.  The pieces were subjected to the temperatures of 410, 440, 470, 
and 500 °C with exposure times of 30 minutes, 1, 2, 4, and 8 hours.  A TA 
instrument, Q20, differential scanning calorimetry (DSC) and a Q800 dynamic 
mechanical analyzer (DMA) was used to measure the Tg’s of each sample, a Q50 
thermogravimetric analyzer (TGA) was used to measure the Td's, and an Instron was 
used to determine the elastic modulus and tensile strength.  The small (~2-3 mm) 
sample squares used for the DSC and TGA were further cured in the instruments 
before conducting test to obtain the glass transition, melting, or decomposition 
temperature.  The rectangular samples for the DMA and Instron were further cured 
in a preheated furnace oven with a nitrogen atmosphere. 

 Figure 2(a) shows the glass transition temperatures as a function of cure time in 
relation to the cure temperatures for the polyimide resin.  The 410 °C temperature 
run showed the best linear trend as cure time was increased, with 8 hours resulting in 
the highest Tg (458 °C).  While the 440 and 470 °C cure temperatures gave high Tg’s 
for 0.5 and 1 hour cure times, the Tg’s became increasingly higher with some of the 
cure times resulting in an undeterminable Tg from the data.  The 2 and 4 hour cure 
times resulted in Tg’s around 500 °C for the 440 °C cure temperature.  Beyond 2 
hours for the 470 °C cure condition, the Tg’s were indistinguishable and samples 
visually showed signs that degradation had started to occur.  Despite the high Tg 
(530 °C) for the 500 °C 30 minute curing, the sample visually appeared to be 
degraded on the exterior.  This data suggests that the cure conditions need to be any 
cure time at 410 °C or less than two hours for cure temperatures below 470 °C.  The 
melting temperatures as a function of cure time in relation to the cure temperatures 
are shown in Figure 2(b).  There was not as much variability in Tm as there was for 
the Tg, but the Tm’s decreased slightly as the cure time was increased regardless of 
curing condition.  This increase in Tg is a result of restriction of chain mobility 
caused by a greater crosslinked structure.  Based on the results obtained in Figure 2, 
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the four hour at 440 °C cure resulted in the best combination of glass transition and 
melting temperature. 

Weight loss during cure, decomposition temperature (Td), and char yield were 
also obtained for the further cured resin.  Figure 3 shows the weight loss during cure 
as a function of cure time with respect to the cure temperature.  The TGA was used 
to first cure the samples and then heated further to obtain the Td’s.  The 410 °C 
curing temperature showed little weight loss (< 2.4%), even with 8hr curing time. 
Both the 410 and 440 °C curing temperatures showed linear weight loss trends as the 
curing time was increased, while the 470 and 500 °C curing temperatures exhibited a 
logarithmic trend with significant weight loss (> 10%) for cure times > 2 hours for 
470 °C and all cure times for 500 °C.  These trends are expected, in particular with 
the higher cure temperatures, due to the eventual overlap of continued crosslinking 
and degradation.  The decomposition temperature trends are similar to the weight 
loss during cure except that the 470 °C cure temperature exhibits a linear trend, as 
shown in Figure 4.  The difference in Td’s for each cure temperature from 30 
minutes to 8 hours nearly doubled with each 30 °C cure temperature increment.  
While having a high Td is beneficial, the amount of weight loss during cure for those 
samples with higher Td’s is too great for using those cure temperatures/times for post 
curing conditions. 

The tensile strength (Fig. 5(a)) and elastic modulus (Fig. 5(b)) were measured for 
each of the polyimide resin cure times/temperatures.  The 410 °C cure temperature, 
regardless of cure time, maintained the best elastic modulus and tensile strength 
properties.  Cure times less than four hours at 440 °C maintained moderate elastic 
modulus and tensile strength despite being lower than the 410 °C cure 
temperature/times.  Curing at 470 °C for 8 hr and > 30 minutes at 500 °C resulted in 
samples that were too brittle or degraded to be tested.  Based on these results, curing 
8 hours at 410 °C produces the best mechanical properties (E ~ 2.1 GPa and TS ~ 45 
MPa). 

Optical microscope images for five selected further cured samples are shown in 
Figure 6 based on the thermal and mechanical properties results.  Two samples, 
cured at 410 °C for 30 minutes (Fig. 6(a)) and 8 hours (Fig. 6(b)), suggest that there 
are still regions of uncrosslinked material due to the brighter brown areas.  The 
sample cured one hour at 440 °C (Fig. 6(c)) was selected in order to determine if 
sample maintained structural integrity on the micro scale.  This cure 
time/temperature condition shows remaining uncrosslinked material, but also 
indicates no significant degradation occurred.  Figure 6(d) and (e) are the 30 minute 
cure time at 470 and 500 °C curing temperatures, respectively.  These samples not 
only showed major degradation from the optical images, but also appeared to be 
degraded to the naked eye.  All of the optical images in Figure 6 verify that the 
lower curing temperatures are better for obtaining a further cured sample that 
maintains structural integrity. 

Figure 7 shows the results obtained from ATR FTIR for the same samples used for 
the optical images.  With increasing cure time/temperature, the intensity of carbon 
double (1640-1680 cm-1) and single bonds (800-1300 cm-1) increases, indicating 
further crosslinking of the triple bonds (2100-2260 cm-1).  As the cure temperature is 
raised to 470 °C, these bond intensities begin to drop due to degradation, which is 
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expected based on the thermal and mechanical property data.  There is a small 
presence of triple bonds still remaining for both of the 410 °C samples, which is also 
suggested by the lower intensity of the carbon double and single bonds.  The 500 °C 
sample lacks the appearance of major chemical bond shifts due to the severity of 
degradation that occurred. 

 
 
 

(a) 

(b) 
Figure 2: Further cure of polyimide resin Tg (a) and Tm (b) as a function of cure time 

(hours) and temperature (°C). 
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Figure 3: Amount of weight loss (%) as a function of cure time (hours) and temperature 

(°C) occurring during further cure of polyimide resin. 
 

 
Figure 4: Decomposition temperature, Td, (°C) as a function of cure time (hours) and 

temperature (°C) occurring during further cure of polyimide resin. 
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(a) 

(b) 
Figure 5: Further cure of polyimide resin’s tensile strength (a) and elastic modulus (b) as 

a function of cure time (hours) and temperature (°C). 
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Figure 6: Polyimide resin cured for 30 min at 410 °C (a), 8 hours at 410 °C (b), 1 hour at 440 °C (c), 
30 min at 470 °C (d), and 30 min at 500 °C (e). 
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fibers (T650-35) that have been subjected to the same air flow rate, oxygen, moisture 
concentration, and temperature.  All the runs in air have been completed for various 
temperatures and air flow rates, while the runs in nitrogen are currently being 
completed.   

 
 

3.3  COMPOSITE STRENGTH AND MODULUS 
 

Thermal exposure can cause fiber fracture for composites that are under load, in 
service environment prior to any significant thermal-induced chemical or physical 
carbon fiber damage because of the decrease in fiber strength with increasing 
temperature [2].  The polyimide matrix loses its load transfer capability at its Tg that 
results in a loss of transverse strength of the composite layers.  The loss of 
carbon-fiber strength with increasing temperature under load needs to be quantified 
for hypersonic vehicle service environments. 

Testing of the AFR-PEPA-4 carbon fiber (T650-35) composites was completed 
over the 2008-09 winter break using an MTS frame with quartz lamps as the heating 
source at the desired temperature.  The composites were studied from 300 to 500 °C 
and tested after an initial soak time of 3-5 minutes at desired temperature.  The 
composites were characterized to show that there was a decrease in thermal-induced 
mechanical properties as the exposure temperature was increased.  Figure 9 shows 
the linear decrease in tensile strength as the testing temperature was increased.  The 
composites lost approximately one-third of their strength after exposure to 500°C.  
The elastic moduli exhibited the same linear decreasing trend as that of the tensile 
strength data; however, the composites moduli decreased by nearly half after being 
subjected to 500°C.  There was an interesting trend observed with both the strength 
and modulus of the composite tested at 450°C.  Both properties increased after 
exposure with the elastic modulus showing a more drastic improvement over the 
tensile strength.  This occurrence could have possibly resulted from a strong 
interaction occurring between the polyimide resin and carbon fibers.  The results 
obtained through this testing overall followed trends that were expected, despite the 
observations made at 450°C.   
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Figure 9: Polyimide carbon fiber composite's tensile strength (MPa) as a function of 

testing temperature (°C). 
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Figure 10: Polyimide carbon fiber composite's elastic modulus (GPa) as a function of 

testing temperature (°C). 
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carbon fiber composite samples.  Moisture contents of 0.4 - 1.5 wt% resulted in 
blister onset temperatures of 246 - 294°C.  These low onset temperatures are not 
surprising because composites typically have more voids and pre-existing flaws, in 
particular due to a weak interface between the resin and carbon fiber that lead to 
lower amounts of moisture causing blistering relative to the neat resin.  The 
composite does not absorb as much moisture as the neat resin due to the large 
concentration (55 wt%) of non-moisture absorbing carbon fiber.  Table 1 shows the 
amount of moisture uptake, thickness change, blister temperature, and storage 
modulus for the composites.  While the blister temperature is affected in relation to 
the amount of moisture present, there is no clear relationship between the thickness 
change or storage modulus of the composite with respect to moisture amounts or 
blister temperature.  The sample not subjected to moisture nor blistering conditions 
exhibited a storage modulus of 8333 MPa.  However, the non-moisture 
induced/blistered sample and moisture induced/nonblistered sample resulted in 
storage moduli of 1442 and 2600 MPa, respectively.  Therefore, a reduction in 
storage modulus is a result of both moisture and blistering conditions.  Optical 
microscope and SEM images support this assertion.  The polyimide composite 
shows a linear decrease in blister temperature as a function of moisture present.  The 
dry composite does not show any voids or flaws in the optical microscope image 
(Figure 13(a)), but the SEM images clearly indicate voids within the resin and at the 
resin-carbon fiber interface (Figures 14(a) and (b)).  In the optical micrographs (Fig. 
13) the light areas are the carbon fiber, while the darker areas are the resin.  The 
areas with alignment and orientation are the carbon fiber in the SEM images (Fig. 14).  
Both types of imaging clearly illustrate the degradation that occurs in the resin and at 
the interface between resin and fiber due to blistering.  It is interesting to note that 
blistering also splits the carbon fiber itself in these images.  This could occur as a 
result of resin material flowing into gaps in the carbon fiber weave during processing.  
Figure 13(c) is an OM image taken from the edge of a blistered sample, which reveals 
that the composite undergoes oxidation on the surface during heating.  This is 
apparent due to the inability to distinguish the layers of polyimide resin and carbon 
fiber. 

This task has been completed and will need to be extrapolated into the hypersonic 
vehicle heating rate ranges and the weight loss rates analyzed by the laws of 
momentum to ascertain if degradation conditions are produced. 
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Table 1. Polyimide composite parameters heating to 500°C. 
Weight % 
Moisture 

Change in 
Thickness (%) 

Blister Onset 
Temperature (°C) 

Storage Modulus 
(MPa) 

0 - - 8333 
0 10.4 303 1442 

0.16 - - 2600 
0.45 9.9 294 999 
0.63 12.5 272 1885 
0.68 10.5 274 1674 
0.87 8.4 268 1768 
0.88 10.4 264 1964 
1.04 10.2 260 2423 
1.07 8.8 261 1585 
1.09 14.4 267 1486 
1.21 10.8 263 1307 
1.48 16.6 246 966 
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(a) 

(b) 
Figure 11: QUV transverse extensometer apparatus (a) for measuring dimensional 

changes as a function of temperature.  The schematic (b) shows the key components of 
this device. 
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Figure 12: Temperature marking onset of blister formation as a function of moisture 

content in polyimide carbon fiber composite.  The trendline shown has an R2 value of 
0.88. 
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(a) 

 
(b)  

 
(c) 

Figure 13: Optical microscope images of the polyimide carbon fiber composite before 
exposure (a) and after being subjected to blister conditions (b) from inside of sample.  

An image taken from the edge of the composite is also shown (c). 
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(a)

 
(b)  

 
(c) 

 
(d)

Figure 14: SEM images of polyimide carbon fiber composite before exposure ((a) and (b)) 
and after being subjected to blister conditions ((c) and (d)). 

 
 

3.5  ABLATION/SPALLING 
 

The rapid heating of composites in hypersonic vehicle service environments can 
potentially result in rapid weight loss in the form of ablation and spalling.  The 
AFR-PEPA-4 polyimide carbon fiber (T650-35) composites were introduced into 
preheated air ovens at 250 - 500 °C with isothermal exposure times up to 20 minutes.  
Weight loss measurements were recorded as a function of temperature-time 
exposures. 

The decomposition temperature of the polyimide containing 55 wt-% carbon fiber 
is 554°C.  This high temperature allows the composite to withstand 510°C for up to 
20 minutes and maintain weight loss below 5%.  At temperatures below 470°C, 
weight loss is less than 1% regardless of the amount of exposure time.  Figure 15(a) 
shows the percent weight loss as a function of temperature for the polyimide 
composite.  At temperatures below 430°C, the weight loss is less than 1% regardless 

1mm 1mm 

200um 200um 
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of the amount of exposure time.  Weight loss shows an exponential trend up to 
510°C (see Fig. 15(a)) and is expected to continue to higher temperatures.  It is not 
until 430°C that any significant degradation is observed, which is expected due to the 
thermal stability of the composite material below its decomposition temperature.  
When exposure temperatures are greater than 490°C the composite material begins to 
show signs of weight loss greater than 1% at all exposure times, as shown in Figure 
15(b).  This result is not surprising because the temperature is nearing the 
decomposition temperature.  The barrier from the carbon fiber also delays the 
decomposition (break down) of the polyimide resin within the composite.  This is 
supported by the optical micrographs shown in Figure 16.  There is no change in the 
composite at the lower temperatures as seen in Figures 16(b) and 16(c).  The light 
areas in the composite are the carbon fiber, while the darker areas are the resin.  
Also of interest, at 510°C, is the delayed degradation at the interface between the 
carbon fiber and resin in the composite (Fig. 16(e)).  This observation reinforces the 
idea that the composite material has a strong fiber-matrix interface, thus resulting in 
good thermal stability.  The carbon fiber in the composite also prevents structural 
defects from occurring at higher temperatures as seen from the images taken at 490°C 
(Figures 16(d)).  Figure 17 shows that this strong interaction remains after exposure 
to 510°C for 20 minutes.  These cross-sectional images of polyimide composite, 
exposed to 510°C for 20 minutes, show the carbon fiber tightly interfaced with the 
matrix.  Cracks in the polyimide are very apparent at both low (Fig. 17(a)) and high 
(Fig. 17(b)) magnification, but no significant gaps are observed where polymer meets 
fiber.  Very little degradation (<1% weight loss) was observed for the fluorinated 
polyimide carbon fiber composite, when exposed to temperatures below 430°C.  
Beyond 470°C, the carbon fiber-filled composite displayed relatively linear weight 
loss as a function of time, but this linear slope grew exponentially with temperature.   

This task has been completed and will need to be extrapolated into the hypersonic 
vehicle heating rate ranges and the weight loss rates analyzed by the laws of 
momentum to ascertain if degradation conditions are produced. 
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(a) 

(b) 
Figure 15: Polyimide composite mass loss in oven as a function of temperature (a) and 

time (b). 
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(a)  

 

(c) 

(b)  

(d)  

 

(d)  

Figure 16: Optical microscope images of polyimide composite prior to ablation (a) and 
ablated at 250°C (b), 370°C (c), 490°C (d), 510°C (e) for 20 minutes. 
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(a) 

(b) 
Figure 17: Scanning electron microscope images of polyimide composite cross-sections, 

after aging at 510°C for 20 minutes, at 500x (a) and 2000x magnification (b). 
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4 DAMAGE ACCUMULATION MODEL 
 

 

 
Figure 18: Future Hypersonic Vehicle Primary Structure Composite Failure Modeling 

 

4.1  MOISTURE-INDUCED DAMAGE MODELING 
In this work, we shall extend the viscolelastic solid model developed for polyimide 
previously to include diffusion of a Newtonian fluid (which can be, for example, 
moisture), using mixture theory. We also include the effects of temperature in the model 
developed below.  

Preliminaries 
We shall consider a mixture of a viscoelastic solid and a Newtonian fluid. Let us denote 
the quantities associated with the fluid through the superscript  and with the superscript 
 for that of the solid. We shall also assume co‐occupancy of the constituents. Now, we 

shall define the motion  for the ‐th constituent of the mixture through 
    (1) 
where  is the material point of the ‐th constituent in its reference configuration and it 
is assumed that the mapping  is sufficiently smooth and invertible at each time . The 
velocity associated with the ‐th constituent is defined as 

    (2) 

and the deformation gradient through 
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    (3) 

The density  and the average velocity (also known as barycentric velocity)  of the 
mixture are defined by 
    (4) 

We define the following derivatives for any scalar quantity  by 

    (5) 

where 
    (6) 
Hence, 

    (7) 

and we shall also define the following 

    (8) 

The velocity gradient for the ‐th component  and the velocity gradient for the total 
mixture  are defined by 
    (9) 
The symmetric and anti‐symmetric parts for the velocity gradients ,  are 

    (10) 

The left Cauchy‐Green stretch tensor  and its prinicipal invariants for the ‐th 
constituent are defined as 
    (11) 

    (12) 

where  is the determinant of a second order tensor. The above defined kinematical 
quantities are sufficient for the following work. 
Balance Laws  
We shall now note the balance laws. The balance of mass for the ‐th constituent without 
any mass production is given by 

    (13) 

where  is the mass density of the ‐th constituent and  is the 
divergence operator with  meaning the trace of a second order tensor. The 
summation of eqn. (13) over  leads to 

    (14) 

The balance of linear momentum for ‐th constituent is 

    (15) 

where  is the interaction force on the ‐th constituent due to the other constituents,  
is the external body force on the ‐th constituent,  is the partial Cauchy stress tensor 
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associated with the ‐th constituent related to the surface traction on the ‐th constituent 
 through 

    (16) 
where  is the surface outward normal. We also have, using Newton’s third law, 
    (17) 

For mixtures, the balance of momentum of angular momentum, in the absence of body 
couples requires that the total Cauchy stress of the mixture be symmetric i.e., 
    (18) 

although the individual partial stresses  could be non‐symmetric. Now, the balance of 
energy for the ‐th constituent is given by 

    (19) 

where , ,  are the specific internal energy, heat flux, radiant heating associated 
with the ‐th component and  is the energy supplied to the ‐th constituent from the 
other constituents. 
Now, taking the scalar multiplication of eqn. (15) and  and subtracting the resulting 
equation from eqn. (19), we arrive at 

    (20) 

Using , where ,  are the Helmholtz potential and specific entropy of 
the ‐th constituent, with  being the common temperature of the constituents at a point 
in the mixture. Next, we shall  define 
    (21) 

The balance of entropy is 

    (22) 

and so the rate of entropy production    reduces to 

    (23) 

where  the  last  term  means  taking  derivative  keeping  the  temperature  constant. 
Assuming  that  the  total  entropy  production  can  be  additively  split  into  entropy 
production due to thermal effects  i.e., conduction  ( ), and entropy production due to 
internal working and mixing ( ), we get that 

    (24) 

    (25) 

Now choosing Fourier’s relation for heat conduction , (24) is 
automatically satisfied. Next, defining the rate of dissipation as , we get 
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    (26) 

Assuming 
    (27) 

 eqn. (26) reduces to 

    (28) 

With the assumption that all the components have the same Helmholtz potential (30) 
leads to 

    (29) 

This  is the reduced energy dissipation equation  in the case of mixtures. We shall next, 
assume forms for the rate of dissipation and the Helmholtz potential, and    then using 
(30) as constraint we shall maximize the rate of dissipation to get the final constitutive 
equations.    In  addition, we  shall also  apply  the  volume  additivity  constraint which  is 
commonly used in mixture theory.

  

  Constitutive assumptions 
 
 Let  denote the current configuration of the mixture and let ,  denote the 
reference configurations of the solid and the fluid respectively. Also, let  denote the 
natural configuration of the viscoelastic solid (see Figure 19).  
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Figure 19 
 
 
We shall now define 
    (30) 

      
Next, we assume  
    (31) 
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and it follows that 

    (32) 

 

  (33) 
 
We shall now note the volume additivity constraint 
    (34) 

where , . Furthermore, it is assumed that the constituents are 

incompressible in their natural states, i.e., 
    (35) 
The balance of mass can be re‐written as 
    (36) 
Eqn. (34), we have 
    (37) 
From (36) and (37), we get 
    (38) 
where , is the velocity with which the fluid diffuses with respect to the 
solid. 
We shall also assume that the rate of entropy production is of the form 
    (39) 

The reduced energy dissipation equation reduces to 

 (40) 

and we shall assume the  specific form as follows: 
 

 
The  first  term  on  the  RHS  is  the  rate  of  dissipation  due  to mechanical working,  the 
second term  is the rate of dissipation due to the fluid, and the  last term  is the rate of 
dissipation due to diffusion of the fluid.

  
Using (33), (38) and (40), we arrive at 
    (41) 

    (42) 
    (43) 
and  
    (44) 

where   
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    (45) 
   

    (46) 

 
Next, 
    (47) 
where , . Assuming that there is no diffusion of 
mass from  to , we have 

    (48) 

   
Maximizing the rate of dissipation with (52) as the constraint, we arrive at the following 
evolution equation for the natural configuration of the solid, given by 

    (49) 

Next, in order to take into account the degradation of the polyimide and the diffusion of 
the moisture, the following forms for the specific Helmholtz potential of the mixture 
 

  (50) 
where  are elastic constants,  is a reference temperature for the 
viscoelastic solid and the rate of dissipation  is of the form 

 (51) 
Then, the internal energy  of the solid is given by 

    (52) 

and hence the specific heat capacity  is 
    (53) 
For the form chosen in (50), we have 
    (54) 

    (55) 

where , . 
and so 

    (56) 

and (49) reduces to 
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    (57) 

The final constitutive equations are 

    (58) 

where ,  with (57) being the evolution equation for the 
natural configuration of the solid. 
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